
Closedness of the solution mapping for parametric
equilibrium problems

M. Bogdan∗ and D. Inoan†

Abstract

The equilibrium problems are treated as classical inequations to obtain
closedness of the solution map defined on the set of parameters.
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1 Introduction

This work is motivated by two recent papers of Bogdan and Kolumbán [2] and
Yu et al. [9]. The first one deals with pseudomonotone operators defined on Sobolev
spaces and conclude for the closedness of the solution mapping defined on the set of
parameters. The second one contains a result on the behavior of Nash equilibrium
points.

We start our exposition from the simple remark: if f is an upper semi-continuous
function then the solution set of the inequality f(x) ≥ 0 is closed.

Let X be a Hausdorff topological space and let fn : X → R, n ∈ N, be given
functions. Let us consider, for n ∈ N∗, the inequations

(1)n fn(x) ≥ 0.

Denote by S1(1/n, fn) the solutions set of (1)n and by S1(0, f0) the solutions set
of

(1) f0(x) ≥ 0.

Suppose that solutions sets are not empty for all n ∈ N.
Let M = {f : X → R | supx∈X |f(x)| < +∞} and let ρ be the metric on M

given by

ρ(f, g) = sup
x∈X

|f(x)− g(x)|, f, g ∈ M.
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We shall denote by fn
ρ−→ f0 if (fn)n∈N∗ converges (uniformly) to f0 with respect

to ρ.

Definition 1. Let M ′ be a subset of M. We say that (1)n are stable if the solution
mapping S1 : N×M ′ → 2X defined above is closed, i.e. if for each sequence (xn)n∈N∗ ,
xn ∈ S1(1/n, fn) with xn → x, fn

ρ−→ f0 as n → +∞ one has x ∈ S1(0, f0).

If M ′ = uC(X) = {f ∈ M | f is upper semi-continuous on X} then (1)n are
stable.

Concerning this property there are several results. Lignola and Morgan estab-
lished convergence of the solutions of generalized parametric variational inequalities
(see [6]). Related to Muu’s article [7], more recently, Khanh and Luu [4], Li et al.
[5] established closedness of the solutions function defined on the set of parameters
for the same class of problems, namely parametric vector quasivariational inequal-
ities. They have imposed conditions of upper semi-continuity being motivated by
restrictions occurring in economical field. However, their hypotheses are too strong
in some applications like variational inequalities governed by differential operators
(see [2]).

2 Parametric equilibrium problems

Let X be a normed space, D a nonempty subset of X and let fn : X ×X → R
be given functions. For n ∈ N∗ we consider the following parametric equilibrium
problem:

(2)n Find an element xn ∈ D such that fn(xn, y) ≥ 0,∀ y ∈ D.

Denote by S2(1/n, fn) the solutions set of (2)n and by S2(0, f0) the solutions set
of the ”limit” equilibrium problem:

(2) Find an element x0 ∈ D such that f0(x0, y) ≥ 0, ∀ y ∈ D.

Suppose that solutions sets are not empty for all n ∈ N.
To compensate for the lack of upper semi-continuity, Brézis ([3]) introduced the

notion of topological pseudomonotonicity (which is a kind of conditioned upper
semi-continuity) only in the context of variational inequalities (see [8]).

Definition 2. We say that a function g : X × X → R is topologically pseu-
domonotone (in the sense of Brézis) if for each sequence (xn)n∈N with xn ⇀ x in
X, lim inf

n
g(xn, x) ≥ 0 imply

lim sup
n

g(xn, y) ≤ g(x, y), for all y ∈ X.

Let N = {f : X×X → R | sup(x,y)∈X×X |f(x, y)| < +∞} and let d be the metric
on N given by

d(f, g) = sup
(x,y)∈X×X

|f(x, y)− g(x, y)|, f, g ∈ N.
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We shall denote by fn
d−→ f0 if (fn)n∈N∗ converges (uniformly) to f0 with respect

to d.
Denote pC(X,X) = {f ∈ N | f is topologically pseudomonotone }.

Proposition 1. Let (fn)n∈N∗ be a sequence such that fn ∈ pC(X, X). If fn
d−→ f0

then f0 ∈ pC(X, X).

Proof. Let ε > 0. Let (xn)n∈N with xn ⇀ x in X, and lim inf
n

f0(xn, x) ≥ 0. For n

large we gain lim inf
n

fn(xn, x) ≥ 0. Since fn are in pC(X, X) one has

lim sup
n

fn(xn, y) ≤ fn(x, y), for all y ∈ X.

Thus
lim sup

n
f0(xn, y) ≤ fn(x, y) < f0(x, y) + ε, for all y ∈ X.

Letting ε → 0 the conclusion follows.

Definition 3. Let N ′ be a subset of N. We say that (2)n are stable if the solution
mapping S2 : N×N ′ → 2X defined above is closed, i.e. if for each sequence (xn)n∈N∗ ,

xn ∈ S2(1/n, fn) with xn ⇀ x0, fn
d−→ f0 as n → +∞ one has x0 ∈ S2(0, f0).

Proposition 2. If N ′ = pC(X, X) then (2)n are stable.

Proof. The conclusion follows by the following inequalities

0 ≤ lim inf
n

fn(xn, y) ≤ lim sup
n

f0(xn, y) + lim inf
n

(
fn(xn, y)− f0(xn, y)

)

= lim sup
n

f0(xn, y) ≤ f0(x, y), ∀ y ∈ D.

3 Parametric Domains

To this point the feasible set has been ”constant”. Corresponding to (1)n for
n ∈ N∗ we shall consider the parametric inequations:

(1)′n find x ∈ Dn such that fn(x) ≥ 0,

where Dn ⊆ X are nonempty and closed.
Denote by S ′1(1/n, fn) the solutions set of (1)′n and by S ′1(0, f0) the solutions set

of
(1)′ find x ∈ D0 such that f0(x) ≥ 0, x ∈ D0.

Suppose that solutions sets are not empty for all n ∈ N. Clearly S ′1(1/n, fn) =
f−1

n ([0, +∞))∩Dn and S ′1(0, f0) = f−1
0 ([0, +∞))∩D0. If ∅ 6= ∩n∈N∗Dn ⊆ D0 we can

easily conclude that (1)′n are stable in the sense of Definition 1.

Corresponding to (2)n we shall consider the parametric equilibrium problems:
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(2)′n Find an element xn ∈ Dn such that fn(xn, y) ≥ 0,∀ y ∈ Dn.

Denote by S ′2(1/n, fn) the solutions set of (2)′n and by S ′2(0, f0) the solutions set
of the ”limit” equilibrium problem:

(2)′ Find an element x0 ∈ D0 such that f0(x0, y) ≥ 0, ∀ y ∈ D0.

Suppose that solutions sets are not empty for all n ∈ N.

Definition 4. We say that (2)′n are stable if the solution map S ′2 : N×pC(X, X) →
2X is closed, i.e. if xn ∈ S ′2(1/n, fn), xn ⇀ x0, and fn

d−→ f0 in pC(X,X) as
n → +∞, then x0 ∈ S ′2(0, f0).

We have the following statement.

Theorem 1. Let X be a normed space. Suppose that Dn are weakly closed for all
n ∈ N∗ and ∅ 6= ∩n∈N∗Dn = D0.

Then (2)′n are stable in the sense of Definition 4.

Proof. Let xn ∈ Dn be such that (2)′n is valid. Let xn ⇀ x0 in X thus we have

x0 ∈ Dn, so lim infn fn(xn, x0) ≥ 0. Since fn
d−→ f0 it follows

lim inf
n

f0(xn, x0) ≥ 0

therefore, by topological pseudomonotonicity of f0 one has

lim sup
n

f0(xn, y) ≤ f0(x0, y), for all y ∈ D0.

Finally,

0 ≤ lim inf
n

fn(xn, y) ≤ lim sup
n

f0(xn, y) + lim inf
n

(
fn(xn, y)− f0(xn, y)

) ≤
≤ lim sup

n
f0(xn, y) ≤ f0(x0, y), ∀ y ∈ D0,

which completes the proof.

One question rises. What is the condition for the parametric domains in order to
have the stability of (2)′n ? We are not naive to consider condition ∅ 6= ∩n∈N∗Dn = D0

a proper one, especially in applications. In [2] we used Mosco’s convergence.

4 Application to hemivariational inequalities

Let us denote by pC0(X,X) = {f ∈ pC(X, X) : f(x, x) = 0, x ∈ X}. First, we
establish that pC0(X,X) is stable with respect to addition. The proof is similar to
Proposition 2.4 in [8].

Proposition 3. If f, g ∈ pC0(X, X) then f + g ∈ pC0(X,X).
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Proof. We claim that lim inf
n

f(xn, x) ≥ 0 and lim inf
n

g(xn, x) ≥ 0. Otherwise

lim inf
n

g(xn, x) = −ε < 0 and, by passing to a subsequence lim
n

g(xn, x) = −ε.

Therefore

lim inf
n

f(xn, x) = lim inf
n

(
(f + g)(xn, x)− g(xn, x)

)

= lim inf
n

(f + g)(xn, x)− lim
n

g(xn, x) ≥ 0 + ε.

Since f is topologically pseudomonotone one has

lim sup
n

f(xn, y) ≤ f(x, y), for all y ∈ X.

Now, put x = y to reach the contradiction as follows

ε ≤ lim inf
n

f(xn, x) ≤ lim sup
n

f(xn, x) ≤ f(x, x) = 0.

The conclusion is obtained from the super-additivity of lim inf and sub-additivity of
lim sup .

Let Ω be a bounded open set of RN with Lipschitz boundary. Let us consider
a function l : Ω × R × R → R, such that l(x; ·, ·) is upper semi-continuous for a.e.
x ∈ Ω and l(·; y, z) is measurable for all y, z ∈ R. We say that l satisfies the growth
condition if there exist h1, h2 ∈ R+ such that

|l(x; y, z)| ≤ (h1 + h2|y|)|z|, a.e. x ∈ Ω,∀ y, z ∈ R.

Lemma 1. ([2]) If l satisfies the conditions above, then the function defined on
H1(Ω)×H1(Ω) by

(u,w) ½
∫

Ω

l
(
x; u(x), w(x)

)
dx

is weakly upper semi-continuous.

For n ∈ N∗ we consider the following variational inequality problem:
(V I)n Find an element un ∈ K such that

∫

Ω

An

(
x, un(x),∇un(x)

) · (∇v(x)−∇un(x)
)
dx +

+

∫

Ω

an
(
x, un(x),∇un(x)

)(
v(x)− un(x)

)
dx +

+

∫

Ω

ln
(
x; un(x), v(x)− un(x)

)
dx ≥ 0, ∀ v ∈ K,

with An = (an
1 , . . . , a

n
N), an, and ln given functions, and K a closed, convex,

nonempty subset of the Sobolev space H1(Ω).
For a fixed n ∈ N, we consider the operator

An : H1(Ω) → (H1(Ω))∗, An(u) = Bn(u, u),
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where

Bn (u, v)(w) =

∫

Ω

{ N∑
i=1

an
i (x, u(x),∇u(x))·∂iw(x)

}
dx+

∫

Ω

an(x, u(x),∇u(x))w(x)dx.

The operators An are topologically pseudomonotone if satisfies some reasonable
conditions (see [8], page 76; [2]).

(V I)n can be written as

find un ∈ K such that fn(un, v) + Ln(un, v) ≥ 0, ∀ v ∈ K,

where fn(u, v) = 〈An(u), v − u〉 and Ln(u,v) =

∫

Ω

ln
(
x; u(x), v(x)− u(x)

)
dx.

Finally, we can apply Proposition 2 and Proposition 3 to obtain a result on the
stability of (V I)n.
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